Part Number Hot Search : 
PD7937 MT917106 F1640 MAX3189E 7461111 LT1462 5HJ43 L251280F
Product Description
Full Text Search
 

To Download TS421-4 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/32 n operating from vcc=2v to 5.5v n standby mode active high (ts419) or low (ts421) n output power into 16 w : 367mw @ 5v with 10% thd+n max or 295mw @5v and 110mw @3.3v with 1% thd+n max. n low current consumption: 2.5ma max n high signal-to-noise ratio: 95db(a) at 5v n psrr: 56db typ. at 1khz, 46db at 217hz n short circuit limitation n on/off click reduction circuitry n available in so8, miniso8 & dfn 3x3 description the ts419/ts421 is a monaural audio power am- plifier driving in btl mode a 16 or 32 w earpiece or receiver speaker. the main advantage of this con- figuration is to get rid of bulky ouput capacitors. capable of descending to low voltages, it delivers up to 220mw per channel (into 16 w loads) of con- tinuous average power with 0.2% thd+n in the audio bandwidth from a 5v power supply. an externally controlled standby mode reduces the supply current to 10na (typ.). the ts419/ ts421 can be configured by external gain-setting resistors or used in a fixed gain version. applications n 16/32 ohms earpiece or receiver speaker driver n mobile and cordless phones (analog / digital) n pdas & computers n portable appliances order code miniso & dfn only available in tape & reel with t suffix. so is available in tube (d) and in tape & reel (dt) pin connections (top view) part number temp. range: i package gain marking ds q ts419 -40, +85c external ts419i ts421 external ts421i ts419 external k19a ts419-2 tba tba x2/6db k19b ts419-4 tba tba x4/12db k19c ts419-8 tba tba x8/18db k19d ts421 external k21a ts421-2 tba tba x2/6db k21b TS421-4 tba tba x4/12db k21c ts421-8 tba tba x8/18db k21d ts419idt: so8 ts419ist, ts419-xist: miniso8 standby bypass v+ in v in- v2 out gnd v cc v out1 1 2 3 4 8 7 6 5 ts421idt: so8 ts421ist, ts421-xist: miniso8 ts419iqt, ts419-xiqt: dfn8 ts421iqt, ts421-xiqt: dfn8 1 2 3 4 5 8 7 6 standby bypass v in+ vcc v out 1 gnd v in- v out 2 1 2 3 4 5 8 7 6 standby bypass v in+ vcc v out 1 gnd v in- v out 2 1 2 3 4 5 8 7 6 standby bypass v in+ vcc v out 1 gnd v in- v out 2 1 2 3 4 5 8 7 6 standby bypass v in+ vcc v out 1 gnd v in- v out 2 ts419 ts421 360mw mono amplifier with standby mode june 2003
ts419-ts421 2/32 absolute maximum ratings operating conditions symbol parameter value unit v cc supply voltage 1) 6v v i input voltage -0.3v to v cc + 0.3v v t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient so8 miniso8 dfn8 175 215 70 c/w pd power dissipation 2) so8 miniso8 dfn8 0.71 0.58 1.79 w esd human body model (pin to pin): ts419 3) , ts421 1.5 kv esd machine model - 220pf - 240pf (pin to pin) 100 v latch-up latch-up immunity (all pins) 200 ma lead temperature (soldering, 10sec) 250 c output short-circuit to vcc or gnd continous 4) 1. all voltage values are measured with respect to the ground pin. 2. pd has been calculated with tamb = 25c, tjunction = 150c. 3. ts419 stands 1.5kv on all pins except standby pin which stands 1kv. 4. attention must be paid to continous power dissipation (v dd x 300ma). exposure of the ic to a short circuit for an extended time period is dramatically reducing product life expectancy. symbol parameter value unit v cc supply voltage 2 to 5.5 v r l load resistor 3 16 w t oper operating free air temperature range -40 to + 85 c c l load capacitor r l = 16 to 100 w r l > 100 w 400 100 pf v icm common mode input voltage range gnd to v cc -1v v v stb standby voltage input ts421 active / ts419 in standby ts421 in standby / ts419 active 1.5 v stb v cc gnd v stb 0.4 1) v r thja thermal resistance junction to ambient so8 miniso8 dfn8 2) 150 190 41 c/w t wu wake-up time from standby to active mode (cb = 1f) 3) 3 0.12 s 1. the minimum current consumption ( i standby ) is guaranteed at v cc (ts419) or gnd (ts421) for the whole temperature range. 2. when mounted on a 4-layer pcb 3. for more details on t wu , please refer to application note section on wake-up time page 28.
ts419-ts421 3/32 fixed gain version specific electrical characteristics v cc from +5v to +2v , gnd = 0v , t amb = 25c (unless otherwise specified) application components information typical application schematics: symbol parameter min. typ. max. unit r in input resistance 20 k w g gain value for gain ts419/ts421-2 gain value for gain ts419/TS421-4 gain value for gain ts419/ts421-8 6db 12db 18db db components functional description r in inverting input resistor which sets the closed loop gain in conjunction with r feed . this resistor also forms a high pass filter with c in (fcl = 1 / (2 x pi x r in x c in )). not needed in fixed gain versions. c in input coupling capacitor which blocks the dc voltage at the amplifiers input terminal r feed feedback resistor which sets the closed loop gain in conjunction with r in . a v = closed loop gain= 2xr feed /r in . not needed in fixed gain versions. c s supply bypass capacitor which provides power supply filtering. c b bypass capacitor which provides half supply filtering.
ts419-ts421 4/32 electrical characteristics v cc = +5v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.8 2.5 ma i standby standby current no input signal, v standby =gnd for ts421 no input signal, v standby =vcc for ts419 10 1000 na voo output offset voltage no input signal, rl = 16 or 32 w, rfeed=20k w 525mv p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 10% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w thd+n = 10% max, f = 1khz, r l = 16 w 166 240 190 207 258 270 295 367 mw thd + n total harmonic distortion + noise (a v =2) r l = 32 w, p out = 150mw, 20hz f 20khz r l = 16 w, p out = 220mw, 20hz f 20khz 0.15 0.2 % psrr power supply rejection ratio (a v =2) 1) f = 1khz , vripple = 200mvpp, input grounded, cb=1f 1. guaranteed by design and evaluation. 50 56 db snr signal-to-noise ratio (filter type a, a v =2) 1) (r l = 32 w, thd +n < 0.5%, 20hz f 20khz) 85 98 db f m phase margin at unity gain r l = 16 w , c l = 400pf 58 degrees gm gain margin r l = 16 w , c l = 400pf 18 db gbp gain bandwidth product r l = 16 w 1.1 mhz sr slew rate r l = 16 w 0.4 v/ m s
ts419-ts421 5/32 electrical characteristics v cc = +3.3v , gnd = 0v , t amb = 25c (unless otherwise specified) 1) 1. all electrical values are guaranted with correlation measurements at 2v and 5v symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.8 2.5 ma i standby standby current no input signal, v standby =gnd for ts421 no input signal, v standby =vcc for ts419 10 1000 na voo output offset voltage no input signal, rl = 16 or 32 w, rfeed=20k w 525mv p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 10% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w thd+n = 10% max, f = 1khz, r l = 16 w 65 91 75 81 102 104 113 143 mw thd + n total harmonic distortion + noise (a v =2) r l = 32 w, p out = 50mw, 20hz f 20khz r l = 16 w, p out = 70mw, 20hz f 20khz 0.15 0.2 % psrr power supply rejection ratio inputs grounded, f = 1khz , vripple = 200mvpp, cb=1f 50 56 db snr signal-to-noise ratio (weighted a, a v =2) (r l = 32 w, thd +n < 0.5%, 20hz f 20khz) 82 94 db f m phase margin at unity gain r l = 16 w , c l = 400pf 58 degrees gm gain margin r l = 16 w , c l = 400pf 18 db gbp gain bandwidth product r l = 16 w 1.1 mhz sr slew rate r l = 16 w 0.4 v/ m s
ts419-ts421 6/32 electrical characteristics v cc = +2.5v , gnd = 0v , t amb = 25c (unless otherwise specified) 1) 1. all electrical values are guaranted with correlation measurements at 2v and 5v symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.7 2.5 ma i standby standby current no input signal, v standby =gnd for ts421 no input signal, v standby =vcc for ts419 10 1000 na voo output offset voltage no input signal, rl = 16 or 32 w, rfeed=20k w 525mv p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 10% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w thd+n = 10% max, f = 1khz, r l = 16 w 32 44 37 41 52 50 55 70 mw thd + n total harmonic distortion + noise (a v =2) r l = 32 w, p out = 30mw, 20hz f 20khz r l = 16 w, p out = 40mw, 20hz f 20khz 0.15 0.2 % psrr power supply rejection ratio (a v =2) inputs grounded, f = 1khz , vripple = 200mvpp, cb=1f 50 56 db snr signal-to-noise ratio (weighted a, a v =2) (r l = 32 w, thd +n < 0.5%, 20hz f 20khz) 80 91 db f m phase margin at unity gain r l = 16 w , c l = 400pf 58 degrees gm gain margin r l = 16 w , c l = 400pf 18 db gbp gain bandwidth product r l = 16 w 1.1 mhz sr slew rate r l = 16 w 0.4 v/ m s
ts419-ts421 7/32 electrical characteristics v cc = +2v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 1.7 2.5 ma i standby standby current no input signal, v standby =gnd for ts421 no input signal, v standby =vcc for ts419 10 1000 na voo output offset voltage no input signal, rl = 16 or 32 w, rfeed=20k w 525mv p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 10% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w thd+n = 10% max, f = 1khz, r l = 16 w 19 24 20 23 30 26 30 40 mw thd + n total harmonic distortion + noise (a v =2) r l = 32 w, p out = 13mw, 20hz f 20khz r l = 16 w, p out = 20mw, 20hz f 20khz 0.1 0.15 % psrr power supply rejection ratio (a v =2) 1) inputs grounded, f = 1khz , vripple = 200mvpp, cb=1f 1. guaranteed by design and evaluation. 49 54 db snr signal-to-noise ratio (weighted a, a v =2) 1) (r l = 32 w, thd +n < 0.5%, 20hz f 20khz) 80 89 db f m phase margin at unity gain r l = 16 w , c l = 400pf 58 degrees gm gain margin r l = 16 w , c l = 400pf 20 db gbp gain bandwidth product r l = 16 w 1.1 mhz sr slew rate r l = 16 w 0.4 v/ m s
ts419-ts421 8/32 index of graphs note : all measurements made with rin=20k w, cb=1f, and cin=10f unless otherwise specified. description figure page common curves open loop gain and phase vs frequency 1 to 12 9 to 10 current consumption vs power supply voltage 13 11 current consumption vs standby voltage 14 to 19 11 to 12 output power vs power supply voltage 20 to 23 12 output power vs load resistor 24 to 27 12 to 13 power dissipation vs output power 28 to 31 13 to 14 power derating vs ambiant temperature 32 14 output voltage swing vs supply voltage 33 14 low frequency cut off vs input capacitor 34 14 curves with 6db gain setting (av=2) thd + n vs output power 35 to 43 15 to 16 thd + n vs frequency 44 to 46 16 signal to noise ratio vs power supply voltage 47 to 48 17 noise floor 49 to 50 17 psrr vs frequency 51 to 55 17 to 18 curves with 12db gain setting (av=4) thd + n vs output power 56 to 64 19 to 20 thd + n vs frequency 65 to 67 20 signal to noise ratio vs power supply voltage 68 to 69 21 noise floor 70 to 71 21 psrr vs frequency 72 to 76 21 to 22 curves with 18db gain setting (av=8) thd + n vs output power 77 to 85 23 to 24 thd + n vs frequency 86 to 88 24 signal to noise ratio vs power supply voltage 89 to 90 25 noise floor 91 to 92 25 psrr vs frequency 93 to 97 25 to 26
ts419-ts421 9/32 fig. 1: open loop gain and phase vs frequency fig. 3: open loop gain and phase vs frequency fig. 5: open loop gain and phase vs frequency fig. 2: open loop gain and phase vs frequency fig. 4: open loop gain and phase vs frequency fig. 6: open loop gain and phase vs frequency 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 8 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 8 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 16 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 8 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 8 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 16 w tamb = 25 c gain phase phase (deg)
ts419-ts421 10/32 fig. 7: open loop gain and phase vs frequency fig. 9: open loop gain and phase vs frequency fig. 11: open loop gain and phase vs frequency fig. 8: open loop gain and phase vs frequency fig. 10: open loop gain and phase vs frequency fig. 12: open loop gain and phase vs frequency 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 16 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 32 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v zl = 32 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 16 w +400pf tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 32 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v zl = 32 w +400pf tamb = 25 c gain phase phase (deg)
ts419-ts421 11/32 fig. 13: current consumption vs power supply voltage fig. 15: current consumption vs standby voltage fig. 17: current consumption vs standby voltage fig. 14: current consumption vs standby voltage fig. 16: current consumption vs standby voltage fig. 18: current consumption vs standby voltage 012345 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c no load ta=-40 c current consumption (ma) power supply voltage (v) 0123 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts419 vcc = 3.3v no load ta=-40 c current consumption (ma) standby voltage (v) 012345 0.0 0.5 1.0 1.5 2.0 2.5 ta=85 c ta=25 c ts421 vcc = 5v no load ta=-40 c current consumption (ma) standby voltage (v) 012345 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts419 vcc = 5v no load ta=-40 c current consumption (ma) standby voltage (v) 012 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts419 vcc = 2v no load ta=-40 c current consumption (ma) standby voltage (v) 0123 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts421 vcc = 3.3v no load ta=-40 c current consumption (ma) standby voltage (v)
ts419-ts421 12/32 fig. 19: current consumption vs standby voltage fig. 21: output power vs power supply voltage fig. 23: output power vs power supply voltage fig. 20: output power vs power supply voltage fig. 22: output power vs power supply voltage fig. 24: output power vs load resistor 012 0.0 0.5 1.0 1.5 2.0 ta=85 c ta=25 c ts421 vcc = 2v no load ta=-40 c current consumption (ma) standby voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 50 100 150 200 250 300 350 400 450 500 thd+n=10% thd+n=0.1% rl = 16 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 50 100 150 200 thd+n=10% thd+n=0.1% rl = 64 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 50 100 150 200 250 300 350 400 450 500 550 thd+n=10% thd+n=0.1% rl = 8 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 50 100 150 200 250 300 thd+n=10% thd+n=0.1% rl = 32 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 8 16243240485664 0 50 100 150 200 250 300 350 400 450 500 thd+n=10% thd+n=0.1% vcc = 5v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( )
ts419-ts421 13/32 fig. 25: output power vs load resistor fig. 27: output power vs load resistor fig. 29: power dissipation vs output power fig. 26: output power vs load resistor fig. 28: power dissipation vs output power fig. 30: power dissipation vs output power 8 16243240485664 0 50 100 150 200 thd+n=10% thd+n=0.1% vcc = 3.3v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 8 16243240485664 0 5 10 15 20 25 30 35 40 45 50 thd+n=10% thd+n=0.1% vcc = 2v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 0 30 60 90 120 150 0 50 100 150 200 250 300 rl=32 w rl=8 w vcc=3.3v f=1khz thd+n<1% rl=16 w power dissipation (mw) output power (mw) 8 16243240485664 0 10 20 30 40 50 60 70 80 90 100 thd+n=10% thd+n=0.1% vcc = 2.5v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( ) 0 50 100 150 200 250 300 350 0 100 200 300 400 500 600 rl=16 w rl=8 w vcc=5v f=1khz thd+n<1% rl=32 w power dissipation (mw) output power (mw) 0 102030405060 0 20 40 60 80 100 120 140 rl=32 w rl=8 w vcc=2.5v f=1khz thd+n<1% rl=16 w power dissipation (mw) output power (mw)
ts419-ts421 14/32 fig. 31: power dissipation vs output power fig. 33: output voltage swing for one amp. vs power supply voltage fig. 32: power derating curves fig. 34: low frequency cut off vs input capacitor for fixed gain versions 0 5 10 15 20 25 30 35 0 20 40 60 80 100 rl=8 w rl=16 w rl=32 w vcc=2v f=1khz thd+n<1% power dissipation (mw) output power (mw) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 rl=8 w rl=32 w rl=16 w tamb=25 c amps. in btl voh & vol for vs1 and vs2 (v) power supply voltage (v) w w w
ts419-ts421 15/32 fig. 35: thd + n vs output power fig. 37: thd + n vs output power fig. 39: thd + n vs output power fig. 36: thd + n vs output power fig. 38: thd + n vs output power fig. 40: thd + n vs output power 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 20hz av = 2 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20hz av = 2 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 1khz av = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20hz av = 2 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 1khz av = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 1khz av = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw)
ts419-ts421 16/32 fig. 41: thd + n vs output power fig. 43: thd + n vs output power fig. 45: thd + n vs frequency fig. 42: thd + n vs output power fig. 44: thd + n vs frequency fig. 46: thd + n vs frequency 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 20khz av = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20khz av = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=20mw vcc=5v, po=220mw rl=16 w av=2 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20khz av = 2 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=28mw vcc=5v, po=300mw rl=8 w av=2 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 0.01 0.1 vcc=2v, po=13mw vcc=5v, po=150mw rl=32 w av=2 cb = 1 m f bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz)
ts419-ts421 17/32 fig. 47: signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 49: noise floor fig. 51: psrr vs input capacitor fig. 48: signal to noise ratio vs power supply voltage with weighted filter type a fig. 50: noise floor fig. 52: psrr vs power supply voltage 2.0 2.5 3.0 3.5 4.0 4.5 5.0 70 75 80 85 90 95 100 av = 2 cb = 1 m f thd+n < 0.5% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 10 20 30 standby=off standby=on rl>=16 w vcc=5v av=2 cb = 1 m f input grounded bw < 125khz tamb=25 c 20k 20 noise floor ( vrms) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 cin = 100nf cin = 1 m f, 220nf vripple = 200mvpp av = 2, vcc = 5v input = grounded cb = 1 m f, rin = 20k w rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 80 85 90 95 100 105 av = 2 cb = 1 m f thd+n < 0.5% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 10 20 30 standby=off standby=on rl>=16 w vcc=2v av=2 cb = 1 m f input grounded bw < 125khz tamb=25 c 20k 20 noise floor ( vrms) frequency (hz) 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 100mvrms rfeed = 20k w input = floating cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts419-ts421 18/32 fig. 53: psrr vs bypass capacitor fig. 55: psrr vs bypass capacitor fig. 54: psrr vs bypass capacitor 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 2 input = grounded cb = cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 2 input = grounded cb = 10 m f cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 2 input = grounded cb = 4.7 m f cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts419-ts421 19/32 fig. 56: thd + n vs output power fig. 58: thd + n vs output power fig. 60: thd + n vs output power fig. 57: thd + n vs output power fig. 59: thd + n vs output power fig. 61: thd + n vs output power 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 20hz av = 4 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20hz av = 4 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 1khz av = 4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20hz av = 4 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 1khz av = 4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 1khz av = 4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw)
ts419-ts421 20/32 fig. 62: thd + n vs output power fig. 64: thd + n vs output power fig. 66: thd + n vs frequency fig. 63: thd + n vs output power fig. 65: thd + n vs frequency fig. 67: thd + n vs frequency 1 10 100 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 20khz av = 4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20khz av = 4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=20mw vcc=5v, po=220mw rl=16 w av=4 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20khz av = 4 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=28mw vcc=5v, po=300mw rl=8 w av=4 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 0.01 0.1 vcc=2v, po=13mw vcc=5v, po=150mw rl=32 w av=4 cb = 1 m f bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz)
ts419-ts421 21/32 fig. 68: signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 70: noise floor fig. 72: psrr vs power supply voltage fig. 69: signal to noise ratio vs power supply voltage with weighted filter type a fig. 71: noise floor fig. 73: psrr vs input capacitor 2.0 2.5 3.0 3.5 4.0 4.5 5.0 70 75 80 85 90 av = 4 cb = 1 m f thd+n < 0.5% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 10 20 30 40 standby=off standby=on rl>=16 w vcc=5v av=4 cb = 1 m f input grounded bw < 125khz tamb=25 c 20k 20 noise floor ( vrms) frequency (hz) 100 1000 10000 100000 -80 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 100mvrms rfeed = 40k w input = floating cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 75 80 85 90 95 100 av = 4 cb = 1 m f thd+n < 0.5% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 10 20 30 40 standby=off standby=on rl>=16 w vcc=2v av=4 cb = 1 m f input grounded bw < 125khz tamb=25 c 20k 20 noise floor ( vrms) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 cin = 100nf cin = 1 m f, 220nf vripple = 200mvpp av = 4, vcc = 5v input = grounded cb = 1 m f, rin = 20k w rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts419-ts421 22/32 fig. 74: psrr vs bypass capacitor fig. 76: psrr vs bypass capacitor fig. 75: psrr vs bypass capacitor 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 4 input = grounded cb = cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 4 input = grounded cb = 10 m f cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 4 input = grounded cb = 4.7 m f cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts419-ts421 23/32 fig. 77: thd + n vs output power fig. 79: thd + n vs output power fig. 81: thd + n vs output power fig. 78: thd + n vs output power fig. 80: thd + n vs output power fig. 82: thd + n vs output power 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 20hz av = 8 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20hz av = 8 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 1khz av = 8 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20hz av = 8 cb = 1 m f bw < 22khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w f = 1khz av = 8 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 1khz av = 8 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw)
ts419-ts421 24/32 fig. 83: thd + n vs output power fig. 85: thd + n vs output power fig. 87: thd + n vs frequency fig. 84: thd + n vs output power fig. 86: thd + n vs frequency fig. 88: thd + n vs frequency 1 10 100 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 8 w , f = 20khz av = 8, cb = 1 m f bw < 125khz, tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.1 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 32 w f = 20khz av = 8 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.01 0.1 vcc=2v, po=20mw vcc=5v, po=220mw rl=16 w av=8 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 1 10 100 1 10 vcc=5v vcc=3.3v vcc=2.5v vcc=2v rl = 16 w f = 20khz av = 8 cb = 1 m f bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 0.1 vcc=2v, po=28mw vcc=5v, po=300mw rl=8 w av=8 cb = 1 m f bw < 125khz tamb = 25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 0.01 0.1 vcc=2v, po=13mw vcc=5v, po=150mw rl=32 w av=8 cb = 1 m f bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz)
ts419-ts421 25/32 fig. 89: signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 91: noise floor fig. 93: psrr vs power supply voltage fig. 90: signal to noise ratio vs power supply voltage with weighted filter type a fig. 92: noise floor fig. 94: psrr vs input capacitor 2.0 2.5 3.0 3.5 4.0 4.5 5.0 60 65 70 75 80 85 90 av = 8 cb = 1 m f thd+n < 0.5% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 10 20 30 40 50 60 70 standby=off standby=on rl>=16 w vcc=5v av=8 cb = 1 m f input grounded bw < 125khz tamb=25 c 20k 20 noise floor ( vrms) frequency (hz) 100 1000 10000 100000 -70 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 100mvrms rfeed = 80k w input = floating cb = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 70 75 80 85 90 95 av = 8 cb = 1 m f thd+n < 0.5% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply voltage (v) 100 1000 10000 0 10 20 30 40 50 60 70 standby=off standby=on rl>=16 w vcc=2v av=8 cb = 1 m f input grounded bw < 125khz tamb=25 c 20k 20 noise floor ( vrms) frequency (hz) 100 1000 10000 100000 -50 -40 -30 -20 -10 0 cin = 100nf cin = 1 m f, 220nf vripple = 200mvpp av = 8, vcc = 5v input = grounded cb = 1 m f, rin = 20k w rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts419-ts421 26/32 fig. 95: psrr vs bypass capacitor fig. 97: psrr vs bypass capacitor fig. 96: psrr vs bypass capacitor 100 1000 10000 100000 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 8 input = grounded cb = cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 8 input = grounded cb = 10 m f cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz) 100 1000 10000 100000 -60 -50 -40 -30 -20 -10 0 vcc = 2v vcc = 5v, 3.3v & 2.5v vripple = 200mvpp av = 8 input = grounded cb = 4.7 m f cin = 1 m f rl >= 16 w tamb = 25 c psrr (db) frequency (hz)
ts419-ts421 27/32 application information n btl configuration principle the ts419 & ts420 are monolithic power amplifiers with a btl output type. btl (bridge tied load) means that each end of the load is connected to two single-ended output amplifiers. thus, we have: single ended output 1 = vout1 = vout (v) single ended output 2 = vout2 = -vout (v) and vout1 - vout2 = 2vout (v) the output power is : for the same power supply voltage, the output power in btl configuration is four times higher than the output power in single ended configuration. n gain in typical application schematic (cf. page 3 of ts419-ts421 datasheet) in the flat region (no c in effect), the output voltage of the first stage is: for the second stage : vout2 = -vout1 (v) the differential output voltage is the differential gain named gain (gv) for more convenient usage is : remark : vout2 is in phase with vin and vout1 is phased 180 with vin. this means that the positive terminal of the loudspeaker should be connected to vout2 and the negative to vout1. n low and high frequency response in the low frequency region, c in starts to have an effect. c in forms with r in a high-pass filter with a -3db cut off frequency . in the high frequency region, you can limit the bandwidth by adding a capacitor (cfeed) in parallel with rfeed. it forms a low-pass filter with a -3db cut off frequency . n power dissipation and efficiency hypothesis: ? load voltage and current are sinusoidal (vout and iout) ? supply voltage is a pure dc source (vcc) regarding the load we have: and and then, the average current delivered by the supply voltage is: the power delivered by the supply voltage is: psupply = vcc icc avg (w) then, the power dissipated by the amplifier is: pdiss = psupply - pout (w) and the maximum value is obtained when: and its value is: remark : this maximum value is only dependent upon power supply voltage and load values. ) w ( r ) vout 2 ( pout l 2 rms = ) v ( rin rfeed vin 1 vout - = ) v ( rin rfeed vin 2 1 vout 2 vout = - rin rfeed 2 vin 1 vout 2 vout gv = - = (hz) rincin 2 1 f cl p = ) hz ( cfeed rfeed 2 1 f ch p = ) v ( t sin v v peak out w = ) a ( r v i l out out = ) w ( r 2 v p l 2 peak out = ) a ( r v 2 icc l peak avg p = ) w ( p p r vcc 2 2 pdiss out out l - p = 0 p pdiss out = ? ? ) w ( r vcc 2 max pdiss l 2 2 p =
ts419-ts421 28/32 the efficiency is the ratio between the output power and the power supply the maximum theoretical value is reached when vpeak = vcc, so n decoupling of the circuit two capacitors are needed to bypass properly the ts419/ts421. a power supply bypass capacitor c s and a bias voltage bypass capacitor c b . c s has particular influence on the thd+n in the high frequency region (above 7khz) and an indirect influence on power supply disturbances. with 1f, you can expect similar thd+n performances to those shown in the datasheet. in the high frequency region, if c s is lower than 1f, it increases thd+n and disturbances on the power supply rail are less filtered. on the other hand, if c s is higher than 1f, those disturbances on the power supply rail are more filtered. c b has an influence on thd+n at lower frequencies, but its function is critical to the final result of psrr (with input grounded and in the lower frequency region). if c b is lower than 1f, thd+n increases at lower frequencies and psrr worsens. if c b is higher than 1f, the benefit on thd+n at lower frequencies is small, but the benefit to psrr is substantial. note that c in has a non-negligible effect on psrr at lower frequencies. the lower the value of c in , the higher the psrr. n wake-up time: t wu when standby is released to put the device on, the bypass capacitor c b will not be charged immediatly. as c b is directly linked to the bias of the amplifier, the bias will not work properly until the c b voltage is correct. the time to reach this voltage is called wake-up time or t wu and typically equal to: t wu =0.15xc b (s) with c b in f. due to process tolerances, the range of the wake-up time is : 0.12xcb < t wu < 0.18xc b (s) with c b in f note : when the standby command is set, the time to put the device in shutdown mode is a few microseconds. n pop performance pop performance is intimately linked with the size of the input capacitor cin and the bias voltage bypass capacitor c b . the size of c in is dependent on the lower cut-off frequency and psrr values requested. the size of c b is dependent on thd+n and psrr values requested at lower frequencies. moreover, c b determines the speed with which the amplifier turns on. the slower the speed is, the softer the turn on noise is. the charge time of c b is directly proportional to the internal generator resistance 150k w .. then, the charge time constant for c b is t b = 150k w xc b (s) as c b is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on vout1 (pin 5), c in must be charged faster than c b . the equivalent charge time constant of c in is: t in = (rin+rfeed)xc in (s) thus we have the relation: t in < t b (s) proper respect of this relation allows to minimize the pop noise. remark : minimizing c in and c b benefits both the pop phenomena, and the cost and size of the application. n application : differential inputs btl power amplifier. the schematic on figure 98, shows how to design the ts419/21 to work in a differential input mode. the gain of the amplifier is: in order to reach optimal performances of the differential function, r 1 and r 2 should be matched at 1% max. vcc 4 v ply sup p p peak out p = = h % 5 . 78 4 = p 1 2 vdiff r r 2 g =
ts419-ts421 29/32 fig. 98 : differential input amplifier configuration input capacitance c can be calculated by the following formula using the -3db lower frequency required. (f l is the lower frequency required) note : this formula is true only if: is ten times lower than f l . the following bill of material is an example of a differential amplifier with a gain of 2 and a -3db lower cuttoff frequency of about 80hz. components : ) ( 2 1 1 f f r c l p ? designator part type r1 20k / 1% r2 20k / 1% c 100nf c b =c s 1f u1 ts419/21 ) hz ( c 942000 1 f b cb =
ts419-ts421 30/32 package mechanical data dim. mm. inch min. typ max. min. typ. max. a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.04 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 e 3.80 4.00 0.150 0.157 e 1.27 0.050 h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 k ? (max.) ddd 0.1 0.04 so-8 mechanical data 0016023/c 8
ts419-ts421 31/32 package mechanical data
ts419-ts421 32/32 package mechanical data information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result f rom its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specificati ons mentioned in this publication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectronics. the st logo is a registered trademark of stmicroelectronics ? 2003 stmicroelectronics - printed in italy - all rights reserved stmicroelectronics group of companies australia - brazil - canada - china - finland - france - germany - hong kong - india - israel - italy - japan - malaysia malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states http://www.st.com


▲Up To Search▲   

 
Price & Availability of TS421-4

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X